

SCALAR POTENTIAL MODEL OF GALAXY CENTRAL MASS AND CENTRAL VELOCITY DISPERSION

John C. Hodge

Blue Ridge Community College, 100 College Dr., Flat Rock, NC 28731-7756, USA

ABSTRACT

The galaxy central mass M_c and central velocity dispersion σ_c have been found to correlate with large scale galaxy parameters for samples of galaxies with a limited range of characteristics. A scalar potential model (SPM) derived from considerations of galaxy clusters, redshift, discrete redshift, H I rotation curves (RCs) of spiral galaxies, and RC asymmetry is applied to central region parameters. The σ_c and M_c are found to correlate to the host galaxy's and neighboring galaxy's B band luminosity. The sample included galaxies with rising, flat, and declining RCs; galaxies with a wide range of characteristics; and galaxies excluded from samples of other studies of σ c relationships. The equations have the same form as the SPM equations for the parameters of the H I RCs. Because the SPM is consistent with the σ_c and M_c observations of the sample galaxies, the Sources and Sinks act as monopoles at the center of the galaxies around them. This suggests the outward scalar potential force of a Source holds the M_c from collapse into a supermassive black hole.

Keywords: Galaxies, fundamental parameters, kinematics and dynamics of galaxies, nuclei, cosmology. PACS numbers: 98.65.-r, 98.70.Vc, 98.80.Es.

INTRODUCTION

Because the amplitude and shape of galaxy rotation curves (RCs) correlate with galaxy luminosity (Burnstein and Rubin, 1985; Catinella *et al.*, 2006; Hodge, 2022; Persic *et al.*, 1996), relationships between galaxy central parameters and large-scale galaxy parameters are unexpected by Newtonian dynamics.

Whitmore et al. (1979) and Whitmore and Kirshner (1981) found the ratio of the rotation velocity v_c (km s⁻¹) in the flat region of the RC and the central velocity dispersion σ_c (km s⁻¹) ≈ 1.7 for a sample of S₀ and spiral galaxies. Gerhard et al. (2001) found the maximum circular velocity of giant, round, and nearly nonrotating elliptical galaxies is correlated to the σ_c . Ferrarese (2002) discovered a power law relationship between circular velocity v_{c25} (km s⁻¹) beyond the radius R_{25} of the 25th isophote and σ_c for a sample that also include elliptical galaxies (see in Fig. 1). Baes et al. (2003) expanded on the data for spiral galaxies with flat and smooth RCs. NGC 0598 was a clear outlier. The vc25 for NGC 0598 used by Ferrarese (2002) was 135 km s⁻¹ that is the highest data point of a rising RC (Corbelli and Salucci, 2000). Galaxies with $\sigma_c < 70 \text{ km s}^{-1}$ ($v_{c25} < 150 \text{ km s}^{-1}$) also deviate from the linear relation. NGC 4565 was excluded because of warps in the H I disk. Also, galaxies with significant noncircular motion of the H I gas such as NGC 3031, NGC 3079, and NGC 4736 were omitted in

Corresponding author e-mail: jchodge@frontier.com

Ferrarese (2002). NGC 3200 and NGC 7171 were also excluded from Ferrarese (2002) because of discrepant σ_c values in the literature.

Pizzella et al. (2005) found the results similar to the ones by Ferrarese (2002) for high surface brightness (HSB) galaxies. Pizzella et al. (2005) also found the data consistent with a linear $v_c - \sigma_c$ relation. HSB galaxies with flat RCs were chosen for the sample. Also, galaxies with highly asymmetric RCs and galaxies with RCs not characterized by an outer flat portion were excluded. Also, Pizzella *et al.* (2005) found the $v_c - \sigma_c$ linear relation for low surface brightness (LSB) galaxies is offset with a larger v_c intercept relative to HSB galaxies. Buyle *et al.* (2006) confirmed this distinction between HSB and LSB galaxies for $\sigma_c > 80$ km s⁻¹ and found that the distinction is less pronounced for galaxies with $\sigma_c < 80$ km s⁻¹. They concluded that the scatter of the $v_c - \sigma_c$ relation is a function of galaxy mass or that the $v_c - \sigma_c$ relation changes at $\sigma_c \approx 80$ km s⁻¹. Hodge (2022) suggested the offset of the measurement of v_c between HSB and LSB galaxies is because the measurement is in an area of the rotation curve (RC) more influenced by neighboring galaxies and in an area of the generally rising RC of LSB galaxies. Further, the criteria for excluding galaxies describe characteristics of large influence of neighbor galaxies. Using the $v_{\rm rrmax}$ as defined by Hodge (2022) may be more appropriate.

The masses of compact stellar clusters at the center of low- and intermediate-luminosity galaxies also correlate with the mass of the host galaxy (Ferrarese *et al.*, 2006; Wehner and Harris, 2006). Ferrarese *et al.* (2006) suggested the compact stellar clusters and the supermassive black hole (SBH) modeled as being at the center of high-luminosity galaxies should be grouped together under the terminology of "Central Massive Objects" (CMOs) with mass $M_{\rm cmo}$. The finding of the correlation between $M_{\rm cmo}$ and the total mass in a galaxy $M_{\rm gal}$ suggests a similar galaxy formation process (Ferrarese *et al.*, 2006; Wehner and Harris, 2006).

Ghez et al. (2000) and Ferrarese and Merritt (2002) have observed Keplerian motion to within one part in 100 in elliptical orbits of stars that are from less than a pc to a few 1000 pc from the center of galaxies. The stars within nine light hours of the Galaxy center have velocities of 1300 km s⁻¹ to 9000 km s⁻¹ (Schödel *et al.*, 2002) and high accelerations (Ghez et al., 2000). A huge amount of mass M_c (M_{\odot}) such as millions of black holes, dense quark stars (Prasad and Bhalerao, 2004), and ionized iron (Wang et al., 2002) must be inside the innermost orbit of luminous matter (Ghez et al., 2000, 2003, 2005; Schödel et al., 2002; Dunning-Davies, 2004). Results concerning Centre of galaxy. DOI: the our https://doi.org/10.48550/arXiv.astro-ph/0402290).

The M_c varies among galaxies from $10^6~M_{
m in}$ to 10^{10}

 M_{\odot} (Ferrarese and Merritt, 2000; Gebhardt *et al.*, 2000a). Ferrarese (2002) found the ratio of the M_c to the mass $M_{\rm DM}$ of the dark matter halo thought to be around spiral galaxies is a positive value that decreased with $M_{\rm DM}$. The M_c can be distributed over the central volume with a density of at least $10^{12}~M_{\odot}~{\rm pc}^{-3}$ (Ghez et al., 1998, 2000, 2005) and (Dunning-Davies, 2004. Results concerning the Centre of our galaxy. DOI: https://doi.org/10.48550/arXiv.astro-ph/0402290). The orbits of stars closest to the Center of the Galaxy are approximately 1,169 times the Schwartschild radius of a supermassive black hole (SBH) thought to be at the center of the Galaxy (Ghez et al., 2000; Schödel et al., 2002). The orbits of stars closest to the center of the Galaxy are following elliptical paths (Ghez et al., 2000) that suggests a net, attractive central force consistent with the Newtonian spherical property (Ghez et al., 2003; Schödel et al., 2003).

That M_c is crowded into a ball with a radius of less than 45 AU is proven (Ghez *et al.*, 2005). That the structure of M_c is a SBH is widely accepted but unproven (Kormendy and Richstone, 1995); it is for a discussion. The Newtonian model implies the M_c must either quickly dissipate or must quickly collapse into a SBH (Kormendy

and Richstone, 1995; Magorrian *et al.*, 1998). The longterm maintenance of M_c rules out the first possibility. Mouawad *et al.* (2005) suggested there is some extended mass around Sgr A. Observations have ruled out many models of the nature of M_c of galaxies (Ghez *et al.*, 2003; Schödel *et al.*, 2003).

Observations inconsistent with the SBH model include shells of outward flowing, shocked gas around galactic nuclei (Binney and Merrifield, 1998) and Königl (2002). Shu et al. (2005) and Silk and Rees (1998) suggested a repulsive force called a "wind" (a gas) exerted a repulsive force acting on the cross-sectional area of particles. Therefore, denser particles such as black holes move inward relative to less dense particles. Less dense particles such as hydrogen gas move outward. Other observations inconsistent with the SBH model include the apparent inactivity of the central SBH (Baganoff et al., 2001; Nayakshin and Sunyaev, 2003; Zhao et al., 2003) and the multitude of X-ray point sources, highly ionized iron, and radio flares without accompanying large variation at longer wavelengths reported near the center of the Milky Way (Baganoff et al., 2001; Baganoff et al., 2003; Binney and Merrifield, 1998; Genzel et al., 2003; Zhao et al., 2003; Wang et al., 2002; Baganoff, 2003). American Astronomical Society HEAD meeting #35, session #03.02).

The M_c correlation with Blue band luminosity L_{bulge} of the host galaxy's bulge (Kormendy and Richstone, 1995) has a large scatter. The $M_c \propto \sigma_c^{\alpha}$, where α varies between 5.27±0.40 (Ferrarese and Merritt, 2000) and 3.75±0.3 (Gebhardt *et al.*, 2000a). The $M_c - \sigma_c$ relation appears to hold for galaxies of differing Hubble types, for galaxies in varying environments, and for galaxies with smooth or disturbed morphologies. Tremaine et al. (2002) suggested the range of α is caused by systematic differences in the velocity dispersions used by different groups. Merritt and Ferrarese (2001b, 2001c) found the range of α is partly due to the type of regression algorithm used and partly due to the velocity dispersion of the Galaxy sample selected. Also, discrepancies have been noted among the methods used to measure M_c (Gebhardt *et al.*, 2000b; Merritt and Ferrarese, 2001a). Bernardi et al. (2007) found a selection bias or large scatter in the M_c - σ and M_c -L_{bulge} correlations that may be the result of more fundamental relations among M_c , σ , and L_{bulge} . McLure and Dunlop (2002) found the black hole - bulge mass relation in active and inactive galaxies.

A scalar potential model (SPM) was derived from considerations of galaxy clusters (Hodge, 2006). The SPM suggests the RCs of spiral galaxies are determined by a scalar potential term added to the conventional Newtonian rotation velocity equation. The scalar potential term is proportional to Blue band luminosity L (erg s⁻¹) of a galaxy. For spiral galaxies (Sources), the scalar potential term is directed outward. For other galaxies (Sinks), the scalar potential term is directed inward. The SPM found parameters P of H I RCs of spiral galaxies are related to L of the host galaxy and of nearby galaxies (Hodge, 2022). The parameters are the square of the rotation velocity, the radius, the mass, and the acceleration at discontinuities in the RC. The equation is

$$\frac{P}{unit} = K_1 B_1^{I_1} \frac{L}{10^8 \text{ erg s}^{-1}} +$$

$$(-1)^s K_2 B_2^{I_2} \frac{|\mathbf{K} \bullet \mathbf{a}_o|}{10^3 \text{ kcp}^{-1} \text{ km}^2 \text{ s}^{-2}} \pm \sigma_e$$
(1)

where *unit* is the units of *P*; K_1 , K_2 , B_1 , and B_2 are unique constants for each *P*; I_1 and I_2 are integers that are unique for each galaxy; $|\mathbf{K} \cdot \mathbf{a}_0|$ is the influence of nearby galaxies and is a correction term to the primary P - Lrelationship; *s* determines the sign of the $|\mathbf{K} \cdot \mathbf{a}_0|$ term; **K** is a constant vector common for all galaxies; \mathbf{a}_0 is the acceleration vector that is calculated from the orientation of the host galaxy, the *L* of the neighboring galaxies; and σ_e is the standard deviation of the relative differences ($\delta P/P$) of the sample galaxies.

This paper pursues the possibility of a relation among the M_c , σ_c , and L of the host and neighboring galaxies suggested by the SPM. A correlation is found in the form of Equation (1). Therefore, a central, repulsive force F_s exerted by the scalar potential ρ field exists to maintain the M_c of spiral galaxies from collapse.

In the following section, the sample is described. Equation (1) is used to calculate the M_c and σ_c in the third section. The discussion and conclusion are in the fourth section.

SAMPLE

The galaxies used in the calculations were those used by Hodge (2022). That is, they were selected from the NED The NED database database. is available at http://nedwww.ipac.caltech.edu. The data were obtained from NED on 5 May 2004. The selection criteria were that the heliocentric redshift z_h be less than 0.03 and that the object be classified as a galaxy. The parameters obtained from the NED database included the name, equatorial longitude E_{lon} (degrees) for J2000.0, equatorial latitude Elat (degrees) for J2000.0, morphology, the Bband apparent magnitude m_b (mag.), and the extinction E_{xt} (mag.) as defined by the NED. The galactocentric redshift z was calculated from the z_h .

The σ_c , the 21-cm line width W_{20} (km s⁻¹) at 20 percent of the peak, the inclination i_n (arcdegrees), and the position angle p_a (arcdegrees) for galaxies were obtained from the LEDA database (the LEDA database is available at http://leda.univ-lyon.fr. The data were obtained from LEDA on 5 May 2004) if such data existed.

The host sample galaxies with the σ_c , m_b , W_{20} , i_n , and p_a values were (1) those used by Hodge (2022) from (Begeman et al., 1991; Broeils, 1992; Freedman et al., 2001; García-Ruiz et al., 2002; Guhathakurta et al., 1988; Kornreich et al., 2000, 2001; Liszt and Dickey, 1995; Macri et al., 2001; Rubin et al., 1985; Swaters et al., 1999; Mannheim and Kmetko, 1996). Linear potentials and galactic rotation curves - detailed fitting. http://www.arxiv.org/abs/astro-ph?9602094), (2) those used by Ferrarese (2002), and (3) those specifically excluded from Ferrarese (2002). A total of 82 host sample galaxies were used for the σ_c calculation. Of the host galaxies, 60 are Source galaxies and 22 are Sink galaxies. Tables 1 and 2 list the host galaxies used in the σ_c calculation. Table 2 lists the 29 host galaxies used in the M_c calculation.

The distance D (Mpc) data for the 29 host sample galaxies used in the M_c calculation were taken from Merritt and Ferrarese (2001a). The D to nine host galaxies was calculated using Cepheid stars from Freedman *et al.* (2001) and Macri *et al.* (2001). The D to NGC 3031 and NGC 4258 were from Merritt and Ferrarese (2001a) rather than from Freedman *et al.* (2001). The D to the remaining host sample galaxies was calculated using the Tully-Fisher relation with the constants developed by Hodge (2006). The remaining galaxies from the NED database were neighbor galaxies. The D of these galaxies was calculated from the relative z and D of the host galaxy as described by Hodge (2022). The L for the galaxies was calculated from the D, m_b , and E_{xt} .

This host galaxy sample has LSB, medium surface brightness (MSB), and HSB galaxies; includes LINER, Sy, HII, and less active galaxies; field and cluster galaxies; galaxies with rising, flat, and declining RCs; and galaxies with varying degrees of asymmetry. The host sample includes NGC 0598, NGC 3031, NGC 3079, NGC 3200, NGC 4565, NGC 4736, and NGC 7171 that were excluded from Ferrarese (2002), six galaxies with $\sigma_c < 70$ km s⁻¹, and galaxies that Pizzella *et al.* (2005) would exclude. Wandel (2004) has treated the relations between massive black holes in AGN and their host galaxies.

RESULTS

Appling the same procedure used by Hodge (2022) for finding the parametric equations yields the following results:

J KIII 5 .	(u) This galaxy has a 2, v	and too s				asurem	ciit.
Galaxy	Morphology	L ^(a)	K ∙ a ^(b)	$\sigma_c^{(c)}$	m_1	m_2	$\delta\sigma_c/\sigma_c$
IC 0342	SAB(rs)cd HII	4.014	(d)	74	0	(d)	-0.11
IC 0724	Sa	1.796	0.057	246	5	11	-0.02
N 0224	SA(s)b LINER	1.125	20.414	170	5	6	0.03
N 0598	SA(s)cd HII	0.219	27.936	37	2	1	0.01
N 0701	SB(rs)c Sbrst	0.425	1.198	73	3	6	0.02
N 0753	SAB(rs)bc	1.255	0.584	116	3	6	0.00
N 0801	Sc	1.162	0.753	146	4	7	0.00
N 1024	(R')SA(r)ab	1.714	0.713	173	4	8	-0.02
N 1353	SA(rs)bc LINER	1.014	0.386	87	3	9	0.17
N 1357	SA(s)ab	2.063	0.270	124	3	10	0.08
N 1417	SAB(rs)b	1.580	0.613	140	3	8	0.05
N 1515	SAB(s)bc	0.745	1 896	101	4	7	-0.11
N 1620	SAB(rs)bc	1 120	0.446	124	4	9	-0.11
N 2639	$(\mathbf{R})\mathbf{S}\mathbf{A}(\mathbf{r})\mathbf{a} \mathbf{S}\mathbf{v}10$	4 588	0.023	108	3	13	0.04
N 2742	SA(s)c	4.566	2 353	66	2	13	0.04
N 2775	SA(s)c	2 987	0.103	176	2	4	-0.01
N 2815	$(\mathbf{P}')\mathbf{SP}(r)\mathbf{h}$	2.987	2 206	202		6	0.00
N 2813	$(\mathbf{K})\mathbf{SB}(\mathbf{I})0$	1.822	0.524	203	4	0	0.01
N 2841	SA(r)b; LINER Syl	1.822	0.524	200	4	9	0.04
N 2844	SA(r)a	0.602	0.055	110	4	9	-0.01
N 2903	SB(s)d HII	0.947	0.130	102	3	8	0.02
N 2998	SAB(rs)c	1.022	2.551	91	3	6	-0.06
N 3067	SAB(s)ab HII	0.309	0.002	80	4	12	-0.01
N 3079	SB(s)c; LINER Sy2	1.300	0.036	146	4	11	-0.07
N 3145	SB(rs)bc	1.529	0.452	169	4	8	0.03
N 3198	SB(rs)c	0.855	0.272	63	2	7	-0.08
N 3200	SA(rs)bc	1.930	0.009	177	4	14	0.12
N 3593	SA(s)0/a; HII Sy2	0.263	0.059	54	3	8	0.01
N 4051	SAB(rs)bc Sy1.5	2.166	0.653	84	1	7	-0.04
N 4062	SA(s)c HII	0.518	0.869	93	4	7	0.00
N 4216	SAB(s)b HI I/LINER	1.731	0.175	207	4	11	-0.05
N 4321	SAB(s)bc; LINER HII	2.209	2.613	86	1	5	0.04
N 4378	(R)SA(s)a Sy2	6.049	0.120	198	2	11	-0.04
N 4388	SA(s)b sp Sy2	0.791	4.067	115	4	6	0.04
N 4414	SA(rs)c LINER	1.294	2.158	110	3	6	0.01
N 4448	SB(r)ab	1.163	1.000	173	5	9	-0.07
N 4548	SBb(rs); LINER Sy	1.087	0.002	144	4	12	0.00
N 4565	SA(s)b sp Sy 3 Sy1.9	1.655	12.922	136	3	4	0.01
N 4647	SAB(rs)c	0.748	0.134	98	3	9	0.05
N 4698	SA(s)ab Sy2	1.396	3.587	133	3	6	0.05
N 4736	(R)SA(r)ab; Sy 2 LINER	1.230	1.092	104	3	7	-0.02
N 4866	SA(r)0+ sp LINER	1.904	0.416	210	4	10	-0.08
N 5033	SA(s)c Sy1.9	1.302	0.937	131	3	8	0.00
N 5055	SA(rs)bc HI I/LINER	1.383	3.582	101	3	7	0.21
N 5297	SAB(s)c sp	0.956	1 432	119	4	8	0.11
N 5457	SAB(rs)cd	2.129	0.370	73	1	7	-0.05
N 6503	SA(s)cd HI I/LINER	0 197	0 303	46	3	5	-0.01
N 6814	SAB(rs)bc Sv1 5	0.036	2 830	112	9	7	0.05
N 7171	SB(rs)h	1.006	0.457	Q/	2	8	-0.04
N 7217	(R)SA(r)ah: Sy I INFR	2 117	0.457	127	3	8	_0.11
N 7331	SA(s)b I INEP	1 570	0.711	127	3	0	_0.11
N 7506	$(\mathbf{R}')\mathbf{SB}(\mathbf{r})0+$	0.741	0.711	130	5	12	0.01
N 7537	SAbc	0.741	1/6 761	79	2	12	_0.13
N 7541	SR(rs)bc pac HII	1 207	140.701	10 65	1	1	-0.01
1 11 / 341		1	14.1101	I U.)		1	0.01

Table 1. The data for the host sample galaxies used in the σ_c calculation. The units: (a) $10^8 \text{ erg cm}^{-2} \text{ s}^{-1}$, (b) $10^3 \text{ kpc}^{-1} \text{ km}^2 \text{ s}^{-2}$, (c) $10^3 \text{ km}^2 \text{ s}^{-2}$. (d) This galaxy has a *z*-value too small to obtain the |**K** • **a**| measurement.

$$\frac{\sigma_c^2}{10^3 \text{ km}^2 \text{ s}^{-2}} = K_{\sigma 1} B_{\sigma 1}^{m_1} \frac{L}{10^8 \text{ erg s}^{-1}} +$$
(2)
$$(-1)^s K_{\sigma 2} B_{\sigma 2}^{m_2} \frac{|\mathbf{K} \bullet \mathbf{a}_{\mathbf{o}}|}{10^3 \text{ kcp}^{-1} \text{ km}^2 \text{ s}^{-2}} \pm 6\%$$

$$\frac{M_c}{10^8 M_{\odot}} = K_{M1} B_{M1}^{n_1} \frac{L}{10^8 \text{ erg s}^{-1}} +$$

$$(-1)^{s_M} K_{M2} B_{M2}^{n_2} \frac{|\mathbf{K} \bullet \mathbf{a}_o|}{10^3 \text{ kcp}^{-1} \text{ km}^2 \text{ s}^{-2}} \pm 3\%$$
(3)

where $K_{\sigma 1} = 1.6 \pm 0.3$, $K_{\sigma 2} = (2.5 \pm 0.7) \times 10^{-3}$, $B_{\sigma 1} = 1.88 \pm 0.06$, $B_{\sigma 2} = 2.52 \pm 0.09$, $K_{M1} = 0.7 \pm 0.1$, $K_{M2} = (5.1 \pm 0.8) \times 10^{-3}$, $B_{M1} = 1.73 \pm 0.04$, and $B_{M2} = 1.70 \pm 0.03$. The integer values for each host sample galaxy are listed in Tables 1 and 2. In both relations, $\sigma_{\rm e} = 18\%$ for the *L* term, only.

Therefore, the galaxies with larger L will have more mass in the center shell to balance the higher $F_{\rm s}$ with the gravitational force $F_{\rm g}$. Therefore, the SPM naturally leads to the smoothness of the $M_{\rm cmo} - M_{\rm gal}$ relation for the full range of CMO spiral galaxies.

Table 2. The data for the host sample galaxies used in the σ_c and M_c calculations. The units: (a) $10^8 \text{ erg cm}^{-2} \text{ s}^{-1}$, (b) $10^3 \text{ kpc}^{-1} \text{ km}^2 \text{ s}^{-2}$, (c) $10^3 \text{ km}^2 \text{ s}^{-2}$, (d) $10^8 M_{\odot}$. (e) This galaxy has a z-value too small to obtain the $|\mathbf{K} \cdot \mathbf{a}|$ measurement.

Galaxy	Morphology	$L^{(a)}$	$ \mathbf{K} \cdot \mathbf{a} ^{(b)}$	$\sigma_c^{(c)}$	$M_c^{(d)}$	m_1	m_2	$\delta\sigma_c/\sigma_c$	n_1	n_2	$\delta M_c/M_c$
I 1459	E3 LINER	3.757	0.809	306	4.600	4	10	0.00	5	10	-0.02
N 0221	cE2	0.021	(e)	72	0.039	8	(e)	0.03	6	(e)	0.05
N 2787	SB(r)0+ LINER	0.122	2.230	194	0.410	8	8	-0.04	7	2	-0.01
N 3031	SA(s)ab; LINER Sy1.8	1.047	0.352	162	0.680	4	10	-0.11	4	6	0.01
N 3115	S0-	1.187	322.121	252	9.200	6	11	0.05	9	13	-0.03
N 3245	SA(r)0^0^; H II LINER	0.956	6.161	210	2.100	5	7	-0.02	6	5	-0.04
N 3379	E1 LINER	0.979	14.051	207	1.350	5	6	-0.05	6	3	-0.01
N 3608	E2 LINER	1.164	0.708	192	1.100	5	9	0.05	5	6	-0.01
N 4258	SAB(s)bc; LINER Sy1.9	1.188	1.536	134	0.390	4	8	0.07	3	2	0.02
N 4261	E2-3 LINER	2.972	10.588	309	5.400	5	7	0.04	6	1	0.00
N 4342	S0-	0.121	0.108	251	3.300	9	11	0.01	11	5	-0.01
N 4374	E1; LERG LINER	3.595	9.080	282	17.000	4	7	-0.06	8	7	-0.02
N 4473	E5	0.941	0.842	179	0.800	5	8	0.04	5	7	0.01
N 4486	E+0-1 pec; NLR g Sy	5.075	0.084	333	35.700	4	12	-0.02	8	19	0.00
N 4564	E6	0.362	56.704	157	0.570	6	0	0.00	6	-3	-0.01
N 4649	E2	3.699	1.337	335	20.600	5	9	-0.07	8	9	0.00
N 4697	E6	1.291	1.994	174	1.700	4	7	0.07	6	8	0.07
N 5128	S0 pec Sy2	0.655	1.739	120	2.400	4	6	0.04	7	7	-0.02
N 5845	Е	0.368	0.314	234	2.900	7	10	-0.02	9	11	0.01
N 6251	E; LERG Sy2	4.990	0.016	311	5.900	4	10	0.00	5	17	0.03
N 7052	Е	3.284	0.232	270	3.700	4	10	0.04	5	11	-0.02
N 3384	SB(s)0-	0.690	2.424	148	0.140	5	7	0.03	2	-4	0.00
N 4742	E4	0.193	7.798	109	0.140	6	5	0.04	4	-1	-0.02
N 1023	SB(rs)0-	0.625	2.266	204	0.440	6	6	0.00	4	3	0.01
N 4291	E3	0.816	1.414	285	1.900	7	9	-0.11	7	8	-0.06
N 7457	SA(rs)0-	0.323	0.900	69	0.036	4	7	0.00	1	-2	0.02
N 0821	E6	1.518	0.329	200	0.390	5	10	-0.15	3	8	-0.04
N 3377	E5-6	0.454	0.442	139	1.100	5	8	0.04	7	9	-0.03
N 2778	Е	0.253	2.230	162	0.130	7	7	-0.10	4	1	0.01

Equation (1) was derived assuming the Newtonian spherical property applied. That is, the Source was internal to the orbits of the mass under consideration. The applicability of equation (1) to σ_c and M_c suggests the Source or Sink acts as a monopole internal to the particles of M_c .

DISCUSSION AND CONCLUSION

The SPM speculates structures of the central mass and the structure of stellar nuclear clusters are the same. The suggested CMO structure is a central Source of a matter-repulsive $\rho \propto R^{-1}$, where *R* is the galactocentric radius, surrounded by a spherical shell of matter. The SPM suggests the $L \propto e$, where *e* is the Source strength and therefore, $F_s \propto \nabla \rho$ at a given *R* on the cross section of matter m_s . Therefore, the density (m_s/m_i) , where m_i is the inertial mass, of particles at a given radius varies with *L*.

If this speculation is essentially correct, then the correlation of central parameters with spiral galaxy global and RC parameters suggests not only a similar galaxy formation process but also a self-regulatory, negative feedback process continually occurring. Feedback processes have been suggested in several recent studies of galaxies with CMOs (Li et al., 2007; Merritt and Ferrarese, 2001a; Robertson et al., 2006). The author further speculate that the e is the control of the negative feedback process. If the mass of the CMO increases, the $F_{\rm g}$ increases and mass migrates inward. At very high ρ , the high repulsive F_s compresses matter, the mass (black hole) cracks like complex molecules in the high heat and pressure of a fractional distillation process, and matter is reclaimed as radiation and elementary particles that form hydrogen. This accounts for the large amount of hydrogen outflowing from the Galaxy center and shocked gas near the Galaxy center. A single black hole reclamation event is consistent with the periodic X-ray pulses from the Galaxy center. Further, the feedback loop controlled by the *e* is the connection among the central parameters, outer RC parameters, and the global parameters of spiral galaxies. However, the *e* of a galaxy acts only radially. Therefore, the $|\mathbf{K} \cdot \mathbf{a}_0|$ terms' effects are the asymmetry and the formation, evolution, and maintenance of the rotation of particles. This effect may be calculated only if the classification of parameters is first calculated.

Another speculation is that there may be galaxies with higher and lower values of the e than in the spiral galaxies. For instance, QSOs may have a higher value of the e that ejects matter from a spiral configuration, e.g see the images in (Sulentic and Arp, 1987). A smaller value of the e would be insufficient to form a disk.

The L term is the primary, determining factor of the parameter relations. The neighboring galaxies cause the scatter noted in the previous studies. The special focus of the present investigation included galaxies that are problematic in other models. Considering the range of observations and range of galaxy characteristics with which the SPM is consistent, the SPM is a relatively simple model.

The SPM was applied to central region parameters. For a sample of 60 Source galaxies and 22 Sink galaxies, the σ_c was found to correlate to the host galaxy's and neighboring galaxy's B band luminosity. The sample included galaxies with rising, flat and declining RCs; galaxies with a wide range of characteristics; and galaxies excluded from samples of other studies of σ_c relationships. For a sample of seven Source galaxies and 22 Sink galaxies, the M_c was found to correlate to the host galaxy's and neighboring galaxy's B band luminosity. The equations have the same form as the SPM equations for the parameters of the H I RCs. The Sources and Sinks act as monopoles at the center of the galaxies around them. The SPM is consistent with M_c and σ_c observations of the sample galaxies.

ACKNOWLEDGMENT

This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of the LEDA database (http://leda.univ-lyon1.fr). The author acknowledges and appreciates the financial support of Maynard Clark, Apollo Beach, Florida, while the author was working on this project.

REFERENCES

Baes, M., Buyle, P., Hau, GKT. and Dejonghe, H. 2003. Observational evidence for a connection between

supermassive black holes and dark matter haloes. Monthly Notices of the Royal Astronomical Society. 341(4):L44-L48. DOI: https://doi.org/10.1046/j.1365-8711.2003.06680.x.

Baganoff, FK., Bautz, MW., Brandt, WN., Chartas, G., Feigelson, ED., Garmire, GP., Maeda, Y., Morris, M., Ricker, GR., Townsley, LK. and Walter, F. 2001. Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre. Nature (London). 413(6851):45-48. DOI: https://doi.org/10.1038/35092510.

Baganoff, FK., Maeda, Y., Morris, M., Bautz, MW., Brandt, WN., Cui, W., Doty, JP., Feigelson, ED., Garmire, GP., Pravdo, SH., Ricker, GR. and Townsley, LK. 2003. *Chandra* X-ray spectroscopic imaging of Sagittarius A* and the central Parsec of the galaxy. The Astrophysical Journal. 591(2):891-915. DOI: https://doi.org/10.1086/375145.

Begeman, KG., Broeils, AH. and Sanders, RH. 1991. Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Monthly Notices of the Royal Astronomical Society. 249(3):523-537. DOI: https://doi.org/10.1093/mnras/249.3.523.

Bernardi, M., Sheth, RK., Tundo, E. and Hyde, JB. 2007. Selection bias in the M•- σ and M•-L correlations and its consequences. The Astrophysical Journal. 660(1):267-275. DOI: https://doi.org/10.1086/512719.

Binney, J. and Merrifield, M. 1998. Galactic Astronomy. Princeton University Press, Princeton, New Jersey, USA. pp 816.

Broeils, AH. 1992. The mass distribution of the dwarf spiral NGC 1560. Astronomy and Astrophysics. 256(1):19-32.

Burnstein, D. and Rubin, VC. 1985. The distribution of mass in spiral galaxies. The Astrophysical Journal. 297(Part 1):423-435. DOI: https://doi.org/10.1086/163541

Buyle, P., Ferrarese, L., Gentile, G., Dejonghe, H., Baes, M. and Klein, U. 2006. The v_c - σ_c relation in low-mass and low surface brightness galaxies. Monthly Notices of the Royal Astronomical Society. 373(2):700-704. DOI: https://doi.org/10.1111/j.1365-2966.2006.11057.x.

Catinella, B., Giovanelli, R. and Haynes, MP. 2006. Template rotation curves for disk galaxies. The Astrophysical Journal. 640(2):751-761. DOI: https://doi.org/10.1086/500171.

Corbelli, E. and Salucci, P. 2000. The extended rotation curve and the dark matter halo of M_{33} . Monthly Notices of the Royal Astronomical Society. 311(2):441-447. DOI: https://doi.org/10.1046/j.1365-8711.2000.03075.x.

Ferrarese, L. 2002. Beyond the bulge: A fundamental relation between supermassive black holes and dark

matter halos. The Astrophysical Journal. 578(1):90-97. DOI: https://doi.org/10.1086/342308.

Ferrarese, L. and Merritt, D. 2000. A fundamental relation between supermassive black holes and their host galaxies. The Astrophysical Journal. 539(1):L9-L12. DOI: https://doi.org/10.1086/312838.

Ferrarese, L. and Merritt, D. 2002. Supermassive black holes. Physics World. 15(6):41-46. DOI: https://doi.org/10.1088/2058-7058/15/6/43.

Ferrarese, L., Côté, P., Bontà, ED., Peng, EW., Merritt, D., Jordán, A., Blakeslee, JP., Haşegan, M., Mei, S., Piatek, S., Tonry, JL. and West, MJ. 2006. A fundamental relation between compact stellar nuclei, supermassive black holes, and their host galaxies. The Astrophysical Journal. 644(1):L21-L24. DOI: https://doi.org/10.1086/505388.

Freedman, WA., Madore, BF., Gibson, BK., Ferrarese, L., Kelson, DD., Sakai, S., Mould, JR., Kennicutt, RC. (Jr.), Ford, HC., Graham, JA., Huchra, JP., Hughes, SMG., Illingworth, GD., Macri, LM. and Stetson, PB. 2001. Final results from the *Hubble Space Telescope* key project to measure the Hubble constant. The Astrophysical Journal. 553(1):47-72. DOI: https://doi.org/10.1086/320638.

García-Ruiz, I., Sancisi, R. and Kuijken, K. 2002. Neutral hydrogen and optical observations of edge-on galaxies: Hunting for warps. Astronomy and Astrophysics. 394(3):769-789. DOI: https://doi.org/10.1051/0004-6361:20020976.

Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, SM., Filippenko, AV., Green, R., Grillmair, C., Ho, LC., Kormendy, J., Lauer, TR., Magorrian, J., Pinkney, J., Richstone, D. and Tremaine, S. 2000^a. A Relationship between nuclear black hole mass and galaxy velocity dispersion. The Astrophysical Journal. 539(1):L13-L16. DOI: https://doi.org/10.1086/312840.

Gebhardt, K., Kormendy, J., Ho, LC., Bender, R., Bower, G., Dressler, A., Faber, SM., Filippenko, AV., Green, R., Grillmair, C., Lauer, TR., Magorrian, J., Pinkney, J., Richstone, D. and Tremaine, S. 2000^b. Black hole mass estimates from reverberation mapping and from spatially resolved kinematics. The Astrophysical Journal. 543(1):L5-L8. DOI: https://doi.org/10.1086/318174.

Genzel, R., Schödel, R., Ott, T., Eckart, A., Alexander, T., Lacombe, F., Rouan, D. and Aschenbach, B. 2003. Nearinfrared flares from accreting gas around the supermassive black hole at the Galactic Centre. Nature (London). 425:934-937. DOI: https://doi.org/10.1038/nature02065.

Gerhard, O., Kronawitter, A., Saglia, RP. and Bender, R. 2001. Dynamical family properties and dark halo scaling relations of giant elliptical galaxies. The Astronomical

Journal. 121(4):1936-1951. DOI: https://doi.org/10.1086/319940.

Ghez, AM., Klein, BL., Morris, M. and Becklin, EE. 1998. High proper-motion stars in the vicinity of Sagittarius A*: Evidence for a supermassive black hole at the center of our galaxy. The Astrophysical Journal. 509(2):678-686. DOI: https://doi.org/10.1086/306528.

Ghez, AM., Morris, M., Becklin, EE., Tanner, A. and Kremenek, T. 2000. The accelerations of stars orbiting the Milky Way's central black hole. Nature. 407:349-351. DOI: https://doi.org/10.1038/35030032.

Ghez, AM., Becklin, E., Duchêne, G., Hornstein, S., Morris, M., Salim, S. and Tanner, A. 2003. Full threedimensional orbits for multiple stars on close approaches to the central supermassive black hole. Astronomische Nachrichten. 324:527-533. DOI: https://doi.org/10.1002/asna.200385103.

Ghez, AM., Salim, S., Hornstein, SD., Tanner, A., Lu, JR., Morris, M., Becklin, EE. and Duchêne, G. 2005. Stellar orbits around the galactic center black hole. The Astrophysical Journal. 620(2):744-757. DOI: https://doi.org/10.1086/427175.

Guhathakurta, P., van Gorkom, JH., Kotanyi, CG. and Balkowski, C. 1988. A VLA H I survey of the Virgo cluster spirals. II. Rotation curves. The Astronomical Journal. 96(3):851-866. DOI: https://doi.org/10.1086/114851.

Hodge, JC. 2006. Scalar potential model of redshift and discrete redshift. New Astronomy. 11(5):344-358. DOI: https://doi.org/10.1016/j.newast.2005.09.002.

Hodge, JC. 2022. Scalar potential model of spiral galaxy HI rotation curves and rotation curve asymmetry. Canadian Journal of Pure and Applied Sciences. 16(2):5427-5445.

Königl, AK. 2002. Disk-driven outflows in AGNs. In: Active Galactic Nuclei: from Central Engine to Host Galaxy, meeting held in Meudon, France, July 23-27, 2002. Eds. Collin, S., Combes, F. and Shlosman, I. ASP (Astronomical Society of the Pacific), Conference Series. Volume 290. pp. 171. DOI: https://doi.org/10.48550/arXiv.astro-ph/0302109.

Kormendy, J. and Richstone, D. 1995. Inward bound -The search for supermassive black holes in galactic nuclei. Annual Review of Astronomy and Astrophysics. 33:581-624. DOI: https://doi.org/10.1146/oppurov.co.22.000105.002052

https://doi.org/10.1146/annurev.aa.33.090195.003053.

Kornreich, DA., Haynes, MP., Lovelace, RVE. and van Zee, L. 2000. Departures from axisymmetric morphology and dynamics in spiral galaxies. The Astronomical Journal. 120(1):139-164. DOI: https://doi.org/10.1086/301422.

Kornreich, DA., Haynes, MP., Jore, KP. and Lovelace, RVE. 2001. Asymmetry in isolated, morphologically normal Sa galaxies. The Astronomical Journal. 121(3):1358-1368. DOI: https://doi.org/10.1086/319402.

Li, Y., Haiman, Z. and Mac Low, MM. 2007. Correlations between central massive objects and their host galaxies: From bulgeless spirals to elliptical. The Astronomical Journal. 663(1):61-70. DOI: https://doi.org/10.1086/518398.

Liszt, HS. and Dickey, JM., 1995. HI emission from the Seyfert galaxies NGC 4051 and NGC 6814. The Astronomical Journal. 110(3):998-999. DOI: https://doi.org/10.1086/117579.

McLure, RJ. and Dunlop, JS. 2002. The black hole bulge mass relation in active and inactive galaxies. In: The Mass of Galaxies at Low and High Redshift. Eds. Bender, R. and Renzini, A. Eso Astrophysics Symposia. Springer, Berlin, Heidelberg. pp 26-31. DOI: https://doi.org/10.1007/10899892_8.

Macri, LM., Stetson, PB., Bothun, GD., Freedman, WL., Garnavich, PM., Jha, S., Madore, BF. and Richmond, MW. 2001. The discovery of Cepheids and a new distance to NGC 2841 using the *Hubble Space Telescope*. The Astrophysical Journal. 559(1):243-259. DOI: https://doi.org/10.1086/322395.

Magorrian, J., Tremaine, S., Richstone, D., Bender, R., Bower, G., Dressler, A., Faber, SM., Gebhardt, K., Green, R., Grillmair, C., Kormendy, J. and Lauer, T. 1998. The demography of massive dark objects in galaxy centers. The Astronomical Journal. 115(6):2285-2305. DOI: https://doi.org/10.1086/300353.

Merritt, D. and Ferrarese, L. 2001^a. Relationship of black holes to bulges. In: The Central Kpc of Starbursts and AGNs. Eds. Knapen, JH., Beckman, JE., Shlosman, I. and Mahoney, TJ. Rutgers Astrophysics Preprint Series No. 321. pp 29. DOI: https://doi.org/10.48550/arXiv.astroph/0107134.

Merritt, D. and Ferrarese, L. 2001^b. The M_•-σ relation for supermassive black holes. The Astrophysical Journal. 547(1):140-145. DOI: https://doi.org/10.1086/318372.

Merritt, D. and Ferrarese, L. 2001^c. Black hole demographics from the $M \bullet - \sigma$ relation. Monthly Notices of the Royal Astronomical Society. 320(3):L30-L34. DOI: https://doi.org/10.1046/j.1365-8711.2001.04165.x.

Mouawad, N., Eckart, A., Pfalzner, S., Schödel, R., Moultaka, J. and Spurzem, R. 2005. Weighing the cusp at the Galactic Centre. Astronomische Nachrichten. 326(2):83-95. DOI:

https://doi.org/10.1002/asna.200410351.

Nayakshin, S. and Sunyaev, R. 2003. Close stars and an inactive accretion disk in Sgr A*: Eclipses and flares.

Monthly Notices of the Royal Astronomical Society. 343(1):L15-L19. DOI: https://doi.org/10.1046/j.1365-8711.2003.06837.x.

Persic, M., Salucci, P. and Stel, F. 1996. The universal rotation curve of spiral galaxies – I. The dark matter connection. Monthly Notices of the Royal Astronomical Society. 281(1):27-47. DOI: https://doi.org/10.1093/mnras/278.1.27.

Pizzella, A., Corsini, EM., Bontà, ED., Sarzi, M., Coccato, L. and Bertola, F. 2005. On the relation between circular velocity and central velocity dispersion in high and low surface brightness galaxies. The Astrophysical Journal. 631(2):785-791. DOI: https://doi.org/10.1086/430513.

Prasad, N. and Bhalerao, RS. 2004. Strange stars with a density-dependent bag parameter. Physical Review D. 69(10):103001. DOI: https://doi.org/10.1103/PhysRevD.69.103001.

Rehartson D. Harravist I. Cov. TI. Matta

Robertson, B., Hernquist, L., Cox, TJ., Matteo, TD., Hopkins, PF., Martini, P. and Springel, V. 2006. The evolution of the M_{BH} - σ relation. The Astrophysical Journal. 641(1):90-102. DOI: https://doi.org/10.1086/500348.

Rubin, VC., Burstein, D., Ford, WK. Jr. and Thonnard, N. 1985. Rotation velocities of 16 SA galaxies and a comparison of Sa, SB and SC rotation properties. The Astrophysical Journal. 289:81-104. DOI: https://doi.org/10.1086/162866.

Schödel, R., Ott, T., Genzel, R., Hofmann, R., Lehnert, M., Eckart, A., Mouawad, N., Alexander, T., Reid, MJ., Lenzen, R., Hartung, M., Lacombe, F., Rouan, D., Gendron, E. *et al.* 2002. A star in a 15.2-year orbit around the supermassive black hole at the Centre of the Milky Way. Nature. 419:694-696. DOI: https://doi.org/10.1038/nature01121.

Schödel, R., Ott, T., Genzel, R., Eckart, A., Mouawad, N. and Alexander, T. 2003. Stellar dynamics in the central arcsecond of our galaxy. The Astrophysical Journal. 596(2):1015-1034. DOI: https://doi.org/10.1086/378122.

Shu, CG., Mo, HJ. and Mao, SD. 2005. An analytic model of galactic winds and mass outflows. Chinese Journal of Astronomy and Astrophysics. 5(4):327-346. DOI: https://doi.org/10.1088/1009-9271/5/4/001.

Silk, J. and Rees, MJ. 1998. Quasars and galaxy formation. Astronomy and Astrophysics. 331:L1-L4.

Sulentic, JW. and Arp, HC. 1987. The galaxy-quasar connection: NGC 4319 and Markarian 205. I. Direct imagery. The Astrophysical Journal. 319(Part 1):687-708. DOI: https://doi.org/10.1086/165489.

Swaters, RA., Schoenmakers, RHM., Sancisi, R. and van Albada, TS. 1999. Kinematically lopsided spiral galaxies.

Monthly Notices of the Royal Astronomical Society. 304(2):330-334. DOI: https://doi.org/10.1046/j.1365-8711.1999.02332.x.

Tremaine, S., Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, SM., Filippenko, AV., Green, R., Grillmair, C., Ho, LC., Kormendy, J., Lauer, TR., Magorrian, J., Pinkney, J. and Richstone, D. 2002. The slope of the black hole mass versus velocity dispersion correlation. The Astrophysical Journal. 574(2):740-753. DOI: https://doi.org/10.1086/341002.

Wandel, A. 2004. Relations between massive black holes in AGN and their host galaxies. In: Coevolution of Black Holes and Galaxies, from the Carnegie Observatories Centennial Symposia. Carnegie Observatories Astrophysics Series. Ed. Ho, LC. Carnegie Observatories, Pasadena, USA.

http://www.ociw.edu/ociw/symposia/series/symposium1/ proceedings.html, id.65.

Wang, QD., Gotthelf, EV. and Lang, CC. 2002. The dominance of diffuse X-ray emission over point sources from a survey of the Galactic Centre region. Nature. 415:148-150. DOI: https://doi.org/10.1038/415148a.

Wehner, EH. and Harris, WE. 2006. From supermassive black holes to dwarf elliptical nuclei: A mass continuum. The Astrophysical Journal. 644(1):L17-L20. DOI: https://doi.org/10.1086/505387.

Whitmore, BC. and Kirshner, RP. 1981. Velocity dispersions in the bulges of spiral and S0 galaxies. II. Further observations and a simple three-component model for spiral galaxies. The Astrophysical Journal. 250(1):43-54. DOI: https://doi.org/10.1086/159346.

Whitmore, BC., Kirshner, RP. and Schechter, PL. 1979. Velocity dispersions in the bulges of spiral galaxies. The Astrophysical Journal. 234(Part 1):68-75. DOI: https://doi.org/10.1086/157473.

Zhao, JH., Young, KH., Herrnstein, RM., Ho, PTP., Tsutsumi, T., Lo, KY., Goss, WM. and Bower, GC. 2003. Variability of Sagittarius A*: Flares at 1 millimeter. The Astrophysical Journal. 586(1):L29-L32. DOI: https://doi.org/10.1086/374581.

Received: July 12, 2022; Accepted: Sept 5, 2022

Copyright©2022, John C. Hodge. This is an open access article distributed under the Creative Commons Attribution Non Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

